Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Int J Pharm ; 656: 124114, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615804

RESUMEN

Personalized medicine aims to effectively and efficiently provide customized drugs that cater to diverse populations, which is a significant yet challenging task. Recently, the integration of artificial intelligence (AI) and three-dimensional (3D) printing technology has transformed the medical field, and was expected to facilitate the efficient design and development of customized drugs through the synergy of their respective advantages. In this study, we present an innovative method that combines AI and 3D printing technology to design and fabricate customized capsules. Initially, we discretized and encoded the geometry of the capsule, simulated the dissolution process of the capsule with classical drug dissolution model, and verified it by experiments. Subsequently, we employed a genetic algorithm to explore the capsule geometric structure space and generate a complex multi-layer structure that satisfies the target drug release profiles, including stepwise release and zero-order release. Finally, Two model drugs, isoniazid and acetaminophen, were selected and fused deposition modeling (FDM) 3D printing technology was utilized to precisely print the AI-designed capsule. The reliability of the method was verified by comparing the in vitro release curve of the printed capsules with the target curve, and the f2 value was more than 50. Notably, accurate and autonomous design of the drug release curve was achieved mainly by changing the geometry of the capsule. This approach is expected to be applied to different drug needs and facilitate the development of customized oral dosage forms.


Asunto(s)
Inteligencia Artificial , Cápsulas , Preparaciones de Acción Retardada , Liberación de Fármacos , Medicina de Precisión , Impresión Tridimensional , Medicina de Precisión/métodos , Preparaciones de Acción Retardada/química , Acetaminofén/química , Acetaminofén/administración & dosificación , Isoniazida/química , Isoniazida/administración & dosificación , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Algoritmos
2.
Chemosphere ; 357: 141858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636910

RESUMEN

The non-free radical oxidation pathway (PMS-NOPs) of peroxymonosulfate (PMS) holds significant promise for practical wastewater treatment applications, owing to its low oxidation potential, high PMS utilization rate, and robust anti-interference capability in the degradation of pollutants. A novel activator copper nitrogen co-doped porous biochar (Cu-N-BC) with rich defect edges and functional groups was obtained by adding Cu and N to the biochar matrix generated by sodium alginate through pyrolysis in this study. Under the condition of 1 mM PMS, 30 mg/L activator was used to activate PMS and achieve efficient degradation of 10 mg/L paracetamol (PCT) within 15 min, with a high reaction rate constants (kobs) of 0.391 min-1. The activation mechanism of the Cu-N-BC/PMS/PCT system was a non-radical activation pathway with the dominance of singlet oxygen (1O2) and the presence of catalyst-mediated electron transfer. The graphite nitrogen, pyridine nitrogen, and Cu-N coordination introduced by Cu/N co-doping, as well as the carbon skeleton and CO functional group of biochar, were considered active sites that promote the 1O2 generation. The Cu-N-BC/PMS system exhibits strong stability, eco-friendliness, effective mineralization, and interference resistance across diverse pH levels (3-11) and interfering ions, including Cl-, H2PO4-, NO3-, SO42-, and humic acid. Remarkably, it efficiently degrades PCT in tap and lake water, achieving a notable 63.73% TOC mineralization rate, with leached copper ions below 0.02 mg/L. This research introduces a novel method for obtaining metal nitrogen carbon activators and enhances understanding of PMS non-radical activation pathways and active sites.


Asunto(s)
Acetaminofén , Carbón Orgánico , Cobre , Nitrógeno , Oxidación-Reducción , Peróxidos , Oxígeno Singlete , Contaminantes Químicos del Agua , Carbón Orgánico/química , Cobre/química , Acetaminofén/química , Contaminantes Químicos del Agua/química , Oxígeno Singlete/química , Nitrógeno/química , Peróxidos/química , Transporte de Electrón , Aguas Residuales/química , Catálisis
3.
Nanoscale ; 16(17): 8573-8582, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38602025

RESUMEN

Advanced nanotechniques and the corresponding complex nanostructures they produce represent some of the most powerful tools for developing novel drug delivery systems (DDSs). In this study, a side-by-side electrospraying process was developed for creating double-chamber nanoparticles in which Janus soluble polyvinylpyrrolidone (PVP) patches were added to the sides of Eudragit RL100 (RL100) particles. Both sides were loaded with the poorly water-soluble drug paracetamol (PAR). Scanning electron microscope results demonstrated that the electrosprayed nanoparticles had an integrated Janus nanostructure. Combined with observations of the working processes, the microformation mechanism for creating the Janus PVP patches was proposed. XRD, DSC, and ATR-FTIR experiments verified that the PAR drug was present in the Janus particles in an amorphous state due to its fine compatibility with the polymeric matrices. In vitro dissolution tests verified that the Janus nanoparticles were able to provide a typical biphasic drug release profile, with the PVP patches providing 43.8 ± 5.4% drug release in the first phase in a pulsatile manner. In vivo animal experiments indicated that the Janus particles, on one hand, could provide a faster therapeutic effect than the electrosprayed sustained-release RL100 nanoparticles. On the other hand, they could maintain a therapeutic blood drug concentration for a longer period. The controlled release mechanism of the drug was proposed. The protocols reported here pioneer a new process-structure-performance relationship for developing Janus-structure-based advanced nano-DDSs.


Asunto(s)
Acetaminofén , Nanopartículas , Povidona , Acetaminofén/química , Acetaminofén/farmacocinética , Acetaminofén/administración & dosificación , Povidona/química , Animales , Nanopartículas/química , Liberación de Fármacos , Portadores de Fármacos/química , Resinas Acrílicas/química , Masculino
4.
Int J Biol Macromol ; 266(Pt 2): 131230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574909

RESUMEN

Due to the biodegradable and biocompatible nature of chitin and chitosan, they are extensively used in the synthesis of hydrogels for various applications. In this work, deacetylation of chitin is carried out with alkaline poly(dimethyldiallylammonium-hydroxide) that gave a higher amount of water-soluble chitin (with 84 % of the degree of deacetylation = chitosan0.84) compared to deacetylation using NaOH. The water-soluble chitosan0.84 is used as intercalating chains for the preparation of acrylic acid and vinylimidazole-based hydrogels. The quaternization of imidazole groups is done with 1,ω-dibromoalkanes, which sets off the crosslinking in the above polymer network. A set of three chitosan0.84 intercalated hydrogels, namely Cs-C4-hydrogel, Cs-C5-hydrogel, and Cs-C10-hydrogel are prepared bearing butyl, pentyl, and decyl chains as respective crosslinkers. The swell ratios of these intercalated hydrogels are compared with those of non-intercalated hydrogels (C4-hydrogel, C5-hydrogel, and C10-hydrogel). Chitosan0.84 intercalated Cs-C10-hydrogel has excellent swelling properties (2330 % swelling ratio) among six synthesized hydrogels. SEM analysis reveals that decyl crosslinker-bearing hydrogels are highly porous. The multi-functionality of Cs-C10-hydrogel and C10-hydrogel is explored towards -the controlled release of paracetamol/urea, and methyleneblue dye absorption. These studies disclose that chitosan0.84 intercalated hydrogels are showing superior-swelling behavior, high paracetamol/urea loading capacities and better dye entrapment than their non-intercalated counterparts.


Asunto(s)
Acetaminofén , Quitina , Preparaciones de Acción Retardada , Hidrogeles , Líquidos Iónicos , Urea , Hidrogeles/química , Hidrogeles/síntesis química , Líquidos Iónicos/química , Quitina/química , Acetaminofén/química , Urea/química , Liberación de Fármacos , Acetilación , Quitosano/química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Polímeros/química , Polímeros/síntesis química
5.
Chemosphere ; 356: 141877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579948

RESUMEN

This study investigated the catalytic activity of biochar materials derived from algal biomass Sargassum fusiforme (S. fusiforme) for groundwater remediation. A facile single-step pyrolysis process was used to prepare S. fusiforme biochar (SFBCX), where x denotes pyrolysis temperatures (600 °C-900 °C). The surface characterization revealed that SFBC800 possesses intrinsic N and P heteroatoms. The optimum experimental condition for acetaminophen (AAP) degradation (>98.70%) was achieved in 60 min using 1.0 mM peroxymonosulfate (PMS), 100 mg L-1 SFBC800, and pH 5.8 (unadjusted). Moreover, the degradation rate constant (k) was evaluated by the pseudo-first-order kinetic model. The maximum degradation (>98.70%) of AAP was achieved within 60 min of oxidation. Subsequently, the k value was calculated to be 6.7 × 10-2 min-1. The scavenger tests showed that radical and nonradical processes are involved in the SFBC800/PMS system. Moreover, the formation of reactive oxygen species (ROS) in the SFBC800/PMS system was confirmed using electron spin resonance (ESR) spectroscopy. Intriguingly, both radical (O2•-, •OH, and SO4•-) and nonradical (1O2) ROS were formed in the SFBC800/PMS system. In addition, electrochemical studies were conducted to verify the electron transfer process of the nonradical mechanism in the SFBC800/PMS system. The scavenger and electron spin resonance (ESR) spectroscopy showed that singlet oxygen (1O2) is the predominant component in AAP degradation. Under optimal condition, the SFBC800/PMS system reached ∼81% mineralization of AAP within 5 min and continued to ∼85% achieved over 60 min of oxidation. Coexisting ions and different aqueous matrices were investigated to examine the feasibility of the catalyst system, and the SFBC800/PMS system was found to be effective in the remediation of AAP-contaminated groundwater, river water, and effluent water obtained from wastewater treatment plants. Moreover, the SFBC800-activated PMS system demonstrated reusability. Our findings indicate that the SFBC800 catalyst has excellent catalytic activity for AAP degradation in aquatic environments.


Asunto(s)
Acetaminofén , Carbón Orgánico , Algas Comestibles , Sargassum , Contaminantes Químicos del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Acetaminofén/química , Sargassum/química , Peróxidos/química , Algas Marinas/química , Cinética , Oxidación-Reducción , Agua Subterránea/química , Restauración y Remediación Ambiental/métodos , Especies Reactivas de Oxígeno
6.
Chemosphere ; 356: 141930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593959

RESUMEN

An important paradigm shift towards the circular economy is to prioritize waste prevention, reuse, recycling, and recovery before disposal is necessary. In this context, a sustainable protocol of converting waste pea peel (wPP) into low-cost carbon nanomaterials for sensing and conversion of p-nitrophenol (p-NP) into value-added paracetamol is being reported. Two fractions of the carbonaceous nanomaterials were obtained after the hydrothermal treatment (HT) of wPP, firstly an aqueous portion containing water-soluble carbon dots (wPP-CDs) and a solid residue, which was converted into carbonized biochar (wPP-BC). Blue-colored fluorescent wPP-CDs displayed excitation-dependent and pH-independent properties with a quantum yield (QY) of 8.82 %, which were exploited for the fluorescence sensing of p-NP with 4.20 µM limit of detection. Pyrolyzed biochar acting as an efficient catalyst effectively reduces p-NP to p-aminophenol (p-AP) in just 16 min with a 0.237 min-1 rate of conversion. Furthermore, the produced p-AP was converted into paracetamol, an analgesic and antipyretic drug, to achieve zero waste theory. Thus, this study provides the execution of sustainable approaches based on the integral valorization of biowaste that can be further recycled and reused, offering an effective way to attain a profitable circular economy.


Asunto(s)
Acetaminofén , Aminofenoles , Carbón Orgánico , Nitrofenoles , Pisum sativum , Acetaminofén/química , Acetaminofén/análisis , Nitrofenoles/química , Carbón Orgánico/química , Pisum sativum/química , Carbono/química , Nanoestructuras/química , Catálisis , Puntos Cuánticos/química
7.
ChemSusChem ; 17(8): e202400234, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38441462

RESUMEN

As we work to transition the modern society that is based on non-renewable chemical feedstocks to a post-modern society built around renewable sources of energy, fuels, and chemicals, there is a need to identify the renewable resources and processes for converting them to platform chemicals. Herein, we explore a strategy for utilizing the p-hydroxybenzoate in biomass feedstocks (e. g., poplar and palm trees) and converting it into a portfolio of commodity chemicals. The targeted bio-derived product in the first processing stage is p-hydroxybenzamide produced from p-hydroxybenzoate esters found in the plant. In the second stage a continuous reaction process converts the p-hydroxybenzamide to p-aminophenol via the Hofmann rearrangement and recovers the unreacted p-hydroxybenzamide. In the third stage the p-aminophenol can be acetylated to form paracetamol, which is readily isolated by liquid/liquid extraction at >95 % purity and an overall p-hydroxybenzamide-to-paracetamol process yield of ~90 %. We explore how utilization of protecting groups alters the challenges in this process and expands the portfolio of possible products to include p-(methoxymethoxy)aniline and N-acetyl-p-(methoxymethoxy)aniline. These target compounds could become value-added renewably-sourced platform chemicals that could be used to produce biodegradable plastics, pigments, and pharmaceuticals.


Asunto(s)
Acetaminofén , Aminofenoles , Biomasa , Aminofenoles/química , Acetaminofén/química , Acetaminofén/síntesis química , Benzamidas/química , Benzamidas/síntesis química , Técnicas de Química Sintética , Parabenos/química
8.
AAPS PharmSciTech ; 25(2): 32, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332361

RESUMEN

Bacterial cellulose (BC) is an interesting material for drug delivery applications due to its high purity. This study aimed to compare the properties of tablets prepared by the wet granulation method using bacterial cellulose prepared by different methods as a diluent, using acetaminophen as a model drug. BC used as diluents were prepared using two different methods: freeze-drying (BC-FD) and phase-inversion (BC-PI), and their characteristics were analyzed and compared with that of commercial microcrystalline cellulose PH 101 (Comprecel® M101). Acetaminophen tablets were prepared by wet granulation using BC-FD, BC-PI, or Comprecel® M101 as diluents, and their tablet properties were examined. The result showed that the morphology, polymorph, and crystallinity of BC-PI and Comprecel® M101 were similar but they were different compared with that of BC-FD. Tablets could be successfully formed using BC-PI and Comprecel® M101 as diluents without any physical defects but the tablet prepared using BC-FD as diluent appeared chipped edge. The characteristics (thickness, weight variation, hardness, friability, disintegration, drug content, and dissolution) of the tablets prepared using BC-PI diluent were also similar to those prepared using Comprecel® M101 diluent, but those of BC-FD diluent were inferior. This indicates that BC prepared in BC-PI can potentially be used as a diluent for tablets prepared by wet granulation.


Asunto(s)
Acetaminofén , Celulosa , Acetaminofén/química , Celulosa/química , Solubilidad , Excipientes/química , Comprimidos/química
9.
Int J Pharm ; 653: 123921, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38382769

RESUMEN

Previous work demonstrated the benefits of dry coating fine-grade microcrystalline cellulose (MCC) for enabling direct compression (DC), a favored tablet manufacturing method, due to enhanced flowability while retaining good compactability of placebo and binary blends of cohesive APIs. Here, fine brittle excipients, Pharmatose 450 (P450, 19 µm) and Pharmatose 350 (P350, 29 µm), having both poor flowability and compactability are dry coated with silica A200 or R972P to assess DC capability of multi-component cohesive API (coarse acetaminophen, 22 µm, and ibuprofen50, 47 µm) blends. Dry coated P450 and P350 not only attained excellent flowability and high bulk density but also heightened tensile strength hence processability, which contrasts with reported reduction for dry coated ductile MCC. Although hydrophobic R972P imparted better flowability, hydrophilic A200 better enhanced tensile strength, hence selected for dry coating P450 in multi-component blends that included fine Avicel PH-105. For coarse acetaminophen blends, substantial bulk density and flowability increase without any detrimental effect on tensile strength were observed; a lesser amount of dry coated P450 was better. Increased flowability, bulk density, and tensile strength, hence enhanced processability by reaching DC capability, were observed for 60 wt% ibuprofen50, using only 18 wt% of the dry coated P450, i.e. 0.18 wt% silica in the blend.


Asunto(s)
Acetaminofén , Excipientes , Acetaminofén/química , Composición de Medicamentos , Excipientes/química , Lactosa , Comprimidos/química , Dióxido de Silicio/química , Tamaño de la Partícula , Polvos/química
10.
Environ Sci Pollut Res Int ; 31(9): 13489-13500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261225

RESUMEN

This work aimed to investigate the impact of hydrogen peroxide (HP) punctual dosage on paracetamol (PCT) degradation, through Fenton and photo-Fenton processes under near-neutral pH conditions, using ferrioxalate and artificial sunlight. The assays were performed using a D-optimal experimental design, to statistically evaluate the influence of radiation (ON or OFF), HP concentration (94.5-756 mg L-1), and HP dosage (YES or NO), on PCT conversion. The optimal conditions determined from the study were: HP = 378 mg L-1, DOS = YES, and RAD = ON, achieving a predicted PCT conversion of 99.68% in 180 min. This result obtained from the model was very close to the experimental one (98.80%). It was verified that HP dosage positively influenced the iron catalytic cycle since higher Fe2+ concentrations were reached at shorter reaction times, accelerating not only PCT conversion but also its by-products hydroquinone and 1,4-benzoquinone, leading to better performances of Fenton and photo-Fenton reactions. Under optimal conditions and employing real water matrices (an artificial matrix with inorganic anions, a real groundwater sample, and a synthetic industrial wastewater), HP dosage demonstrated the ability to mitigate the negative effects caused by the content of different ions and other organic compounds and significantly improve HP consumption in challenging wastewater conditions.


Asunto(s)
Acetaminofén , Oxalatos , Contaminantes Químicos del Agua , Acetaminofén/química , Peróxido de Hidrógeno/química , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción
11.
Anal Bioanal Chem ; 416(1): 215-226, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923939

RESUMEN

In this work, we are pleased to present for the first time a 3D-printed electrochemical device using a lab-made conductive filament based on graphite (Gr) and polylactic acid (PLA) polymer matrix for the simultaneous detection of amoxicillin (AMX) and paracetamol (PAR). The sensor was properly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the commercial glassy carbon electrode (GCE), the superior performance of the 3D-Gr/PLA electrode was verified with a 3.8-fold more favored charge transfer. A differential pulse voltammetry (DPV) method was proposed providing a linear working range of 4 to 12 µmol L-1 for both analytes and a limit of detection (LOD) of 0.80 and 0.51 µmol L-1 for AMX and PAR, respectively. Additionally, repeatability studies (n = 5, RSD < 5.7%) indicated excellent precision, and recovery percentages ranging from 89 to 109% when applied to synthetic human urine, saliva, and plasma samples, attested to the accuracy of the method. The studies also indicate that the sensor does not suffer significant interference from common substances (antibiotics and biomarkers) present in the biological fluids, which makes it a promising analytical tool considering its low-cost, ease of manufacturing, robustness, and electrochemical performance.


Asunto(s)
Acetaminofén , Grafito , Humanos , Acetaminofén/química , Amoxicilina , Grafito/química , Electrodos , Poliésteres , Impresión Tridimensional , Técnicas Electroquímicas
12.
Environ Int ; 181: 108299, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37951015

RESUMEN

Paracetamol/acetaminophen (N-acetyl-p-aminophenol, APAP) is a top selling analgesic used in more than 600 prescription and non-prescription pharmaceuticals. To study efficiently some of the potential undesirable effects associated with increasing APAP consumption (e.g., developmental disorders, drug-induced liver injury), there is a need to improve current APAP biomonitoring methods that are limited by APAP short half-life. Here, we demonstrate using high-resolution mass spectrometry (HRMS) in several human studies that APAP thiomethyl metabolite conjugates (S-methyl-3-thioacetaminophen sulfate and S-methyl-3-thioacetaminophen sulphoxide sulfate) are stable biomarkers with delayed excretion rates compared to conventional APAP metabolites, that could provide a more reliable history of APAP ingestion in epidemiological studies. We also show that these biomarkers could serve as relevant clinical markers to diagnose APAP acute intoxication in overdosed patients, when free APAP have nearly disappeared from blood. Using in vitro liver models (HepaRG cells and primary human hepatocytes), we then confirm that these thiomethyl metabolites are directly linked to the toxic N-acetyl-p-benzoquinone imine (NAPQI) elimination, and produced via an overlooked pathway called the thiomethyl shunt pathway. Further studies will be needed to determine whether the production of the reactive hepatotoxic NAPQI metabolites is currently underestimated in human. Nevertheless, these biomarkers could already serve to improve APAP human biomonitoring, and investigate, for instance, inter-individual variability in NAPQI production to study underlying causes involved in APAP-induced hepatotoxicity. Overall, our findings demonstrate the potential of exposomics-based HRMS approach to advance towards a better precision for human biomonitoring.


Asunto(s)
Acetaminofén , Monitoreo Biológico , Humanos , Acetaminofén/toxicidad , Acetaminofén/química , Acetaminofén/metabolismo , Espectrometría de Masas , Hígado , Biomarcadores/metabolismo , Sulfatos/metabolismo
13.
Int J Pharm ; 643: 123286, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37532009

RESUMEN

Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines.


Asunto(s)
Acetaminofén , Tecnología Farmacéutica , Animales , Ratas , Acetaminofén/química , Tecnología Farmacéutica/métodos , Impresión Tridimensional , Polímeros/química , Liberación de Fármacos , Comprimidos/química
14.
Int J Pharm ; 642: 123101, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37295568

RESUMEN

3D printing offers new opportunities to customize oral dosage forms of pharmaceuticals for different patient populations, improving patient safety, care, and compliance. Although several notable 3D print technologies have been developed, such as inkjet printing, powder-based printing, selective laser sintering (SLS) printing, and fused deposition modelling (FDM), among others, their capacity is often limited by the number of printing heads. 3D screen-printing (3DSP) is based on a classic flatbed screen printing that is widely used in industrial applications for technical applications. 3DSP can build up thousands of units per screen simultaneously, enabling mass customization of pharmaceuticals. Here, we use 3DSP to investigate two novel paste formulations: immediate-release (IR) and extended-release (ER) using Paracetamol (acetaminophen) as the active pharmaceutical ingredient (API). Both disk-shaped and donut-shaped tablets were fabricated using one or both pastes to design drug delivery systems (DDS) with tailored API release profiles. The size and mass of the produced tablets demonstrated high uniformity. Characterization of the tablets physical properties, such as breaking force (25-39 N) and friability (0.002-0.237%), adhering to Ph. Eur (10th edition). Finally, drug release tests with a phosphate buffer at pH 5.8 showed Paracetamol release depended on the IR- and ER paste materials and their respective compartment size of the composite DDS, which can be readily varied using 3DSP. This work further demonstrates the potential of 3DSP to manufacture complex oral dosage forms exhibiting custom release functionalities for mass production.


Asunto(s)
Acetaminofén , Tecnología Farmacéutica , Humanos , Acetaminofén/química , Composición de Medicamentos , Comprimidos/química , Impresión Tridimensional , Liberación de Fármacos , Formas de Dosificación
15.
Int J Biol Macromol ; 244: 125329, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307970

RESUMEN

The use of advanced electroactive catalysts enhances the performance of electrochemical biosensors in real-time biomonitoring and has received much attention owing to its excellent physicochemical and electrochemical possessions. In this work, a novel biosensor was developed based on the electrocatalytic activity of functionalized vanadium carbide (VC) material, including VC@ruthenium (Ru), VC@Ru-polyaniline nanoparticles (VC@Ru-PANI-NPs) as non-enzymatic nanocarriers for the fabrication of modified screen-printed electrode (SPE) to detect acetaminophen in human blood. As-prepared materials were characterized using SEM, TEM, XRD, and XPS techniques. Biosensing was carried out using cyclic voltammetry and differential pulse voltammetry techniques and has revealed imperative electrocatalytic activity. A quasi-reversible redox method of the over-potential of acetaminophen increased considerably compared with that at the modified electrode and the bare SPE. The excellent electrocatalytic behaviour of VC@Ru-PANI-NPs/SPE is attributed to its distinctive chemical and physical properties, including rapid electron transfer, striking á´«-á´« interface, and strong adsorptive capability. This electrochemical biosensor exhibits a detection limit of 0.024 µM, in a linear range of 0.1-382.72 µM with a reproducibility of 2.45 % relative standard deviation, and a good recovery from 96.69 % to 105.59 %, the acquired results ensure a better performance compared with previous reports. The enriched electrocatalytic activity of this developed biosensor is mainly credited to its high surface area, better electrical conductivity, synergistic effect, and abundant electroactive sites. The real-world utility of the VC@Ru-PANI-NPs/SPE-based sensor was ensured via the investigation of biomonitoring of acetaminophen in human blood samples with satisfactory recoveries.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Rutenio , Humanos , Acetaminofén/química , Vanadio , Reproducibilidad de los Resultados , Nanopartículas/química , Polímeros , Técnicas Electroquímicas , Electrodos
16.
J Am Soc Mass Spectrom ; 34(7): 1491-1500, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37308161

RESUMEN

Drug distribution studies in tissue are crucial for understanding the pharmacokinetics and potential toxicity of drugs. Recently, matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has gained attention for drug distribution studies due to its high sensitivity, label-free nature, and ability to distinguish between parent drugs, their metabolites, and endogenous molecules. Despite these advantages, achieving high spatial resolution in drug imaging is challenging. Importantly, many drugs and metabolites are rarely detectable by conventional vacuum MALDI-MSI because of their poor ionization efficiency. It has been reported that acetaminophen (APAP) and one of its major metabolites, APAP-Cysteine (APAP-CYS), cannot be detected by vacuum MALDI-MSI without derivatization. In this context, we showed the distribution of both APAP and APAP-CYS in kidneys at high spatial resolution (25 and 10 µm) by employing an atmospheric pressure-MALDI imaging mass microscope without derivatization. APAP was highly accumulated in the renal pelvis 1 h after drug administration, while APAP-CYS exhibited characteristic distributions in the outer medulla and renal pelvis at both 30 min and 1 h after administration. Interestingly, cluster-like distributions of APAP and APAP-CYS were observed in the renal pelvis at 10 µm spatial resolution. Additionally, a novel APAP metabolite, tentatively coined as APAP-butyl sulfate (APAP-BS), was identified in the kidney, brain, and liver by combining MSI and tandem MSI. For the first time, our study revealed differential distributions of APAP, APAP-CYS (in kidneys), and APAP-BS (in kidney, brain, and liver) and is believed to enhance the understanding of the pharmacokinetics and potential nephrotoxicity of this drug.


Asunto(s)
Acetaminofén , Cisteína , Acetaminofén/química , Acetaminofén/farmacocinética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Riñón/metabolismo
17.
J Pharm Sci ; 112(8): 2124-2136, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37230252

RESUMEN

This paper considers two fine-sized (d50 ∼10 µm) model drugs, acetaminophen (mAPAP) and ibuprofen (Ibu), to examine the effect of API dry coprocessing on their multi-component medium DL (30 wt%) blends with fine excipients. The impact of blend mixing time on the bulk properties such as flowability, bulk density, and agglomeration was studied. The hypothesis tested is that blends with fine APIs at medium DL require good blend flowability to have good blend uniformity (BU). Moreover, the good flowability could be achieved through dry coating with hydrophobic (R972P) silica, which reduces agglomeration of not only fine API, but also of its blends while using fine excipients. For uncoated APIs, the blend flowability was poor, i.e. cohesive regime at all mixing times, and the blends failed to achieve acceptable BU. In contrast, for dry coated APIs, their blend flowability improved to easy-flow regime or better, improving with mixing time, and as hypothesized, all blends consequently achieved desired BU. All dry coated API blends exhibited improved bulk density and reduced agglomeration, attributed to mixing induced synergistic property enhancements, likely due to silica transfer. Despite coating with hydrophobic silica, tablet dissolution was improved, attributed to the reduced agglomeration of fine API.


Asunto(s)
Excipientes , Dióxido de Silicio , Composición de Medicamentos , Excipientes/química , Dióxido de Silicio/química , Polvos/química , Tamaño de la Partícula , Acetaminofén/química
18.
Inorg Chem ; 62(21): 8249-8260, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37202345

RESUMEN

In this work, we propose a modified solid-state approach for the sustainable preparation of a SrWO4 bifunctional catalyst using thymol-menthol-based natural deep eutectic green solvents (NADESs). Various spectroscopic and morphological techniques analyzed the as-synthesized SrWO4 particles. Acetaminophen (ATP) and metformin (MTF) were selected as the model drug compounds. The electrochemical detection and photocatalytic degradation of ATP and MTF upon ultraviolet-visible (UV-vis) light irradiation in the presence of as-prepared SrWO4 particles as an active catalyst are examined. The present study displayed that the proposed catalyst SrWO4 has enhanced catalytic activity in achieving the optimum experimental conditions, and linear ranges of ATP = 0.01-25.90 µM and MTF = 0.01-25.90 µM, a lower limit of detection (LOD) value (ATP = 0.0031 µM and MTF = 0.008 µM), and higher sensitivity toward ATP and MTF determination were obtained. Similarly, the rate constant was found to be k = ATP = 0.0082 min-1 and MTF = 0.0296 min-1 according to the Langmuir-Hinshelwood model, benefitting from the excellent synergistic impact of the SrWO4 catalyst toward the photocatalytic degradation of the drug molecule. Hence, this work offers innovative insights into the applicability of the as-prepared SrWO4 bifunctional catalyst as an excellent functional material for the remediation of emerging pollutants in water bodies with a recovery range of 98.2-99.75%.


Asunto(s)
Acetaminofén , Disolventes Eutécticos Profundos , Acetaminofén/química , Solventes , Adenosina Trifosfato
19.
J Hazard Mater ; 456: 131652, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224712

RESUMEN

This study demonstrates the transformation of acetaminophen by reactive nitrous acid in a frozen solution and its abnormal stoichiometry. The chemical reaction between acetaminophen and nitrous acid (AAP/NO2- system) was negligible in the aqueous solution; however, the reaction rapidly progressed if the solution started to freeze. The ultrahigh performance liquid chromatography-electrospray ionization tandem mass spectrometry measurements showed that polymerized acetaminophen and nitrated acetaminophen were formed in the proceeding reaction. Electron paramagnetic resonance spectroscopy measurements showed that nitrous acid oxidized acetaminophen via a one-electron transfer reaction producing acetaminophen-derived radical species, which is the cause of acetaminophen polymerization. We demonstrated that a relatively smaller dose of nitrite than acetaminophen caused significant acetaminophen degradation in the frozen AAP/NO2- system and revealed that the dissolved oxygen content notably affected acetaminophen degradation. We showed that the reaction occurs in a natural Arctic lake matrix (nitrite and acetaminophen spiked). Considering that the freezing phenomenon is common in the natural environment, our research provides a possible scenario for the freezing chemistry of nitrite and pharmaceuticals in environmental chemistry.


Asunto(s)
Nitritos , Ácido Nitroso , Acetaminofén/química , Congelación , Dióxido de Nitrógeno
20.
ACS Biomater Sci Eng ; 9(3): 1682-1693, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36840727

RESUMEN

With respect to sensor application investigations, hollow mesoporous carbon sphere-based materials of the spinel type of cobalt oxide (Co3O4) and heteroatom-doped materials are gaining popularity. In this contribution, dopamine hydrochloride (DA) and cobalt phthalocyanine (CoPc) precursors were employed to construct a highly homogeneous Co3O4-embedded N-doped hollow carbon sphere (Co3O4@NHCS) by a straightforward one-step polymerization procedure. The resulting Co3O4@NHCS materials may effectively tune the surface area, defect sites, and doping amount of N and Co elements by altering the loading amount of CoPc. The relatively high surface area, greater spherical wall thickness, enriched defect sites, and better extent of N and Co sites are all visible in the best 200 mg loaded Co3O4@NHCS-2 material. This leads to significant improvement in pyridine and graphitic N site concentrations, which offers exceptional electrochemical performance. Electrochemical analysis was used to study the electrocatalytic activity of Co3O4@NHCSs towards the sensing of pharmacologically active significant compounds (acetaminophen). Excellent sensor properties include the linear range (0.001-0.2 and 1.0-8.0 mM), sensitivity, limit of detection (0.07 and 0.11 µM), and selectivity in the modified Co3O4@NHCSs/GCE. The authentic sample (acetaminophen tablet) produces a satisfactory result when used practically.


Asunto(s)
Acetaminofén , Carbono , Carbono/química , Acetaminofén/análisis , Acetaminofén/química , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...